
Integration of Semantic Web Technology in an
Annotation-based Hypervideo System

Olivier Aubert, Pierre-Antoine Champin, and Yannick Prié

LIRIS, University Claude Bernard Lyon 1
F-69622 Villeurbanne Cedex, France

firstname.lastname@liris.cnrs.fr
http://liris.cnrs.fr/firstname.lastname

Abstract. This article discusses the integration of semantic web technologies
(ontology and inference) into audiovisual annotation based models and systems.
The Advene project, aimed at all purpose hypervideo generation from annotated
audiovisual documents, is used as a testbed. Advene principles and the Advene
prototype are first presented, before a discussion on how ontology and reasoning
can easily be integrated into the Advene framework. Some motivating examples
are proposed, and our proposals and related works are discussed.

1 Introduction

This article has two primary goals and one angle of vision. The first goal is to present
the Advene (Annotate Digital Video, Exchange on the NEt) project, rationale and pro-
totype, as a powerful set of ideas and tools for designing andtesting innovative uses
of video through rich video annotation and hypervideos generation. The second goal
is to present how semantic web technologies can be used in theAdvene framework,
in order to provide extra features mainly related to ontological reasoning. The angle
of vision we adopt throughout the article is more related to the audiovisual annotation
and hypermedia document engineering than to the semantic webour main concern is to
study what semantic web technologies can bring to audiovisual annotation, hypervideo
construction and audiovisual information systems.

We generally consider [1] that full audiovisual information systems (AVIS) should
provide users with the possibility to search into video bases using indexes, to select
from the retrieved documents the most relevant for the current task, and to reuse parts
of documents, mainly in new hypermedia documents (simply watching them being a
very simple reuse for instance). We also claim that annotations are the pivot to such au-
diovisual information systems, as they provide all the necessary information to search,
select and manipulate audiovisual documents and fragments.

As a means to understand present annotation-based audiovisual information systems
and to design future ones, we choose to use the hypervideo concept.Hypervideos[2]
refer to hypermedia documents that are constructed fromannotated audiovisual docu-
mentsinformation: digital audiovisual documents (moving images and related sounds)
and annotations for these audiovisual documents, which aredigital pieces of informa-
tion in relation with spatio-temporal fragments of the documents. Examples of hyper-
videos include web pages that refer to a video using some excerpts as key images,

video streams enriched with textual information and hyperlinks, reconstructed audiovi-
sual streams, etc.

The next section of this article presents the Advene model and prototype for hy-
pervideo engineering. The following section describes howwe easily added semantic
web reasoning capabilities to the Advene prototype thanks to its flexible model. The
last section deals with some examples of semantic web-enriched uses of annotations in
the context of Advene and more generally in the AVIS/hypervideo context.

2 Advene model and prototype

The Advene project aims at providing tools to exchange various analyses about movies
stored in digital form (digital video files, DVDs...), and more importantly, offer the
possibility to enhance and customize these analyses. Analyses are built upon annota-
tions, which represent pieces of data of any type that are (spatio)temporally linked to
the movie. The Advene prototype thus provides means to create and modify annota-
tions, as well as to specify how they should be rendered in meaningful ways. Instead of
exchanging the sole final form of an analysis, the Advene project makes it possible to
rather exchange annotations and the specification of their visualisation, thus allowing
end-users to customize data and visualisations in order to fit their needs.

We will see in this section how data is organized by the Advenemodel, and how the
model is implemented in the current prototype1.

2.1 The Advene model

It is commonly agreed that the handling of audiovisual contents has to use metadata,
the audiovisual data itself being not fitted to indexing or querying without any pre-
processing. Of the various existing approaches, let us givean overview of two important
standards – MPEG-7[3] and Annodex[4] – and see how our proposal relates to them.

MPEG-7 aims at being the standard representation format to exchange metadata
associated to audiovisual streams. It provides means to link metadata to portions of au-
diovisual documents. The MPEG-7 standard defines standard metadata, mostly focus-
ing on low-level descriptors automatically extractable from the audiovisual document
(colors, textures, shapes, audio characteristics...), aswell as a way to specify additional
metadata through XML Schema. It is used by some vendors, but acommon complaint
is the complexity of its model, which makes it difficult to usefor simple things or for
interoperation with other standards [5].

The Annodex[4] projects aims at creating acontinuous media webwhere metadata
is embedded in audiovisual documents, making them indexable and searchable. Aiming
at simplicity, itsContinuous Media Markup Language(CMML) is inspired by HTML,
and allows to quickly edit metadata. After edition, CMML files are combined with the
audiovisual documents. Annodex solves the simplicity issue (using an HTML inspired
syntax), at the expense of a lack of structure. Moreover, it merges metadata with the au-
diovisual document, making it harder to use different metadata for the same audiovisual
document.

1 available fromhttp://liris.cnrs.fr/advene/

The Advene model somehow aims at bridging the gap between both approaches:
it provides a way to link metadata to audiovisual documents.It does not impose any
constraints on the nature of metadata, and keeps metadata separate from the audiovisual
document, so that they can evolve and be exchanged independently from each other.

Annotation structure We developed the Advene model based on our reflexion about
hypervideos [1]. AnAnnotated Audiovisual Document(AAD) is an audiovisual doc-
ument augmented with metadata. Processing both the audiovisual document and its
accompanying metadata givesviewson the AAD, some of them qualifying ashyper-
videos: views of the AAD that on the one hand use information from both the audio-
visual documentand the annotation structure, and on the other hand give access to the
temporality of the audiovisual document.

In the Advene model, described more precisely in [2], the annotation structure con-
sists mainly ofannotations, that contain data and are linked through a temporal (pos-
sibly spatio-temporal) fragment to a specific portion of theaudiovisual document. The
structure of data contained in the annotations is not specified by the model: it can be any
type of data (simple text, structured information, audio documents, office documents...).

In order to be usable, while retaining their genericity, annotations are flexibly struc-
tured:annotation typesdefine the kind of content (through a MIME-type specification)
held by annotations. Multiple annotation types can be used to describe a number of
analysis facets. Moreover,relationsallow to link annotations with each other, and are
specified byrelation types. Relation types define the types of annotations that can be
linked, as well as an optional content MIME type for relations.

As annotation types and relation types define a certain pointof view in the document
analysis, they are grouped as meaningful sets calledschemas. An Advene schema thus
defines annotation types and relation types that form together an analysis framework.

Let us illustrate this structure through a simple example. Consider a movie contain-
ing a lot of flashbacks. The analysis of the temporal relations of the various narrative
sequences (also calleddiegetic chronology) can be used to discourse about the narrative
structure. We define an Advene schema calleddiegetic chronology, that contains two
annotation types:shot, that represents a shot as the basic unit in movies anddiegetic
sequencethat represents a chronologically consistent unit. A relation type,followed by,
will allow to link a sequence to the following one in the diegetic chronology. Another
schema, calledmovie, contains among other types acharacterannotation type, that rep-
resents a character. Figure 1 sums up these schema, figure 2 present how it is possible
to annotate a movie using the diegetic chronology schema.

shot
(text/x−advene−structured)

−shot number
− short description

sequence
(text/plain)

− Title

followed by

character
(application/vcard)

Vcard

moviediegetic chronology

...

Fig. 1. Thediegetic chronologyandmovieschema

shot shot shot

AV document

Annotations

Structure

t

Annotation

Structure

shot

followed by

sequence sequencesequence

shot

Fig. 2. An annotated audiovisual document

One of the design goals of Advene is to allow users to specify themselves how they
want the annotations to be rendered. The Advene model definesthe notion ofview,
that represents a way to display annotations. Moreover, visualising data also means
selecting the data to be visualised: aqueryrepresents a way to select elements from the
annotation structure.

Annotations

Schemas
Annotation types
Relation types

Relations

Views

Package

Queries

Fig. 3. Overview of the Advene model

Figure 3 gives an overview of the different elements of the Advene model. They are
stored in documentary units calledpackages. A package is a document that holds all
relevant information (schemas, annotations, queries and views) allowing to exchange,
modify and visualise the metadata associated to an audiovisual document. Being sepa-
rate from the audiovisual document, it can be modified and exchanged independently.

2.2 The Advene prototype

The Advene model is fairly generic. Some decisions regarding the implementation of
query or view languages had to be made in the prototype.

Visualising annotations in the Advene prototype The Advene model defines a notion
of view, without specifying what is in a view, which is a decision left to the implemen-
tation. The Advene prototype proposes three types of views:ad-hoc views (GUI views),
static views (HTML templates) and dynamic views (set of rules allowing to dynamically
modify the movie rendering).

Ad-hoc viewsare programmed views built in the GUI, that the user can configure. They
feature standard views found in audiovisual software (time-line views, hierarchical data
view, transcription view...).

Static views are XHTML templates that can be applied on the data. We are reusing
the ZPT (Zope Page Templates) template system from the Zope platform [6]. This tem-
plate system is oriented towards XML templates edition, using attributes in a dedicated
namespace as processing instructions. Thanks to this attribute-based approach, both
templates and result documents are valid XML documents, which allows us to process
them with standard XML processing tools, like theepozWYSISWYG browser-based
editor [7] that has been integrated in the prototype.

Another component brought by the ZPT framework is the TALES syntax, that pro-
poses a simple, path-like addressing scheme to address elements from a data model.
This approach does not try to be a full query language, such asXPath wrt. XML, but
instead to provide a simple, user-accessible way of addressing elements. For instance,
the expression/package/annotationTypes/sequence/annotations/first/content/data ad-
dresses the content of the first annotation of typediegetic sequence.

Dynamic viewsare able to dynamically change the way the movie is played, based on
the annotations’ content. Using a rule-based model similarto the filtering capabilities of
e-mail software (Event-Condition-Action [8]), dynamic views allow the user to specify
various actions to be executed when some events occur. The actions range from simple
VCR-like functionality (pause, go to a position, stop...) to more elaborate video control
(display captions – text or graphic – on the video, get a snapshot...), and also provide
user-interaction facilities (information popups, navigation popups offering to go to an-
other position...). The events are triggered by the annotation structure (annotation begin,
annotation end...) or by user actions (player pause, playerstart...).

With this simple rule-based specification, it is possible toenrich the movie with
information issued from the annotation structure, or even change the way the movie
is played. The ruleWhen the eventannotation begin occurs, display the annotation
content as a caption if the annotation type issequence displays the sequence title over
the video. The ruleWhen the eventannotation end occurs, go to the beginning of the
related annotation if there exists afollowed by relation will make a dynamic montage
of the movie, restoring the diegetic chronology of the sequences.

Queries offer a way to select elements from the annotation structure. A simple query
implementation has been integrated in the prototype, usingthe same framework as the
dynamic views: elements matching a given condition can be extracted from a given set
of elements. This approach has proved flexible enough to accommodate various needs
in our experimentations: selecting elements based on theircontents, their temporal re-
lationships (through Allen relations) or their relations.

Architecture of the Advene prototype The open-source Advene prototype reuses
standard software components: it embeds the versatile, open-source and cross-platform
VLC video player [9], uses the ZPT template model from Zope, and uses a standard web
browser to visualise the rendition of the ZPT templates. Figure 4 provides an overview
of the prototype architecture.

The Advene prototype has been written in python, which proved an excellent choice
for rapid development and experimentation. It provides a testbed for the development

Web browser
Web

server
Advene
model
(data

access) Video player

Advene core :

XHTML generation

Event
engine

User
interaction

Video
output

Advene GUI

Fig. 4. The Advene prototype architecture

of new ideas in the field of multimedia annotation handling and visualisation. It is being
used in ongoing collaborations with researchers in human interactions (who study video
recordings) or movies study, as well as by individual researchers that use audiovisual
material. The following section describes how we have integrated OWL in Advene.

3 Integrating OWL in Advene

In this section, we demonstrate how OWL descriptions and inferences integrate smoothly
inside the Advene model presented before. This will be illustrated with the example Ad-
vene schemas from the previous section.

We propose here a two-steps integration of OWL in Advene: exposing Advene ele-
ments as an OWL description, then performing inference overit and getting the results
back into the Advene model. The first step is achieved by usingAdveneviews, while
the second one is performed by dedicated Advenequeries.

3.1 OWL views

Exposing Advene elements as OWL can be done in two non-exclusive ways: using
views to “expose” Advene structures as OWL structures, or putting OWL statements
inside annotations/relations (as their content).

Viewing Advene structures as OWL The first way is a direct application of the gen-
eral notion of view in Advene, using OWL as a target format. Itis straightforward in
the current implementation since everything in an Advene package already has a URI,
and since ZPT (the template language used to define static views) is able to produce any
kind of XML document.

On the one hand, such views could do a straightforward “translation” of the Advene
structure, according to an ontology of the Advene model (with classes such as Package,
AnnotationType, Annotation, etc.). We actually designed such an ontology as a proof
of concept, and a package containing the associated ZPT views2. The advantage of that
package is that it can be imported in any other Advene packageand enhance it with
OWL export capabilities.

2 http://liris.cnrs.fr/advene/owl/1.0/advene-sw.xml

On the other hand, schema authors may want to devise more specific OWL views
in order to embed the underlying semantics of their schema, so that the produced OWL
statements are more richly describing the annotation structure. For example, we can
imagine that the designer ofdiegetic chronologywould represent the binary relationfol-
lowed byby an OWL property rather than by OWL instances, and impose that diegetic
sequenceannotations be followed by at most one other sequence.

We also envision that some Advene schemas could be designed on top of a pre-
existing ontology in order to use that ontology in the context of video annotation. For
example, one could want to describe the characters of a movieand the relationships
between them by defining an annotation typecharacterand a number of relation types
corresponding to the properties in theRelationshipontology3 (childOf, worksWith, en-
emyOf. . .), then provide a view converting annotations complying to this schema into
an RDF description complying with that ontology. This scenario shows that, instead
of considering the RDF description as a by-product of the Advene package, one can
consider Advene as a front-end tool for annotating videos with RDF/OWL.

OWL statements in annotations/relations content Putting OWL statements inside
annotations/relations is also a straightforward application of Advene principles, which
does not impose any data type on their content. One could for example add such a
content in annotations of typeshotin order to formally describe the depicted scene (e.g.
with the ontomedia ontology [10], intended to describe fictional films). One could then
query each annotation individually to perform inference over its content. But inference
would not here take advantage of the fact that annotations are attached to a fragment of
the video stream.

Yet the anchoring of OWL statements in the stream can be takeninto account by
groupingseveral contents, according to various criteria which we call reasoning con-
texts, and which can in turn be materialized by other annotations.For example, one
might want to reason on the content of all shots temporally contained in a given diegetic
sequence. Or, assuming that a relationappears inexist betweencharacterandshotan-
notations, one might want to reason on the content of all shots where a given character
appears (see figure 5).

Using annotations as reasoning contexts over multiple OWL-annotations can be
achieved by defining specific views over the context annotations themselves, where
an OWL ontology is generated, importing all the contents of the relevant annotations.
TALES expressions and Advene queries can indeed be used in views to retrieve anno-
tations based on temporal relationship or Advene relations. In the example of figure 5,
applying the “temporal inclusion” view tod1 would generate an ontology importing
the contents ofs1 ands2, while applying it tod2 would imports3 ands4. On the other
hand, a view using theappears inrelation would generate an ontology importings1 and
s3 when applied toc1, and onlys4 when applied toc2. We see that OWL statements
can be used in different context, depending on the point of view used to group them.

3 http://vocab.org/relationship/

Fig. 5. Annotations of typecharacteror diegetic sequencecan be used as reasoning contexts for
the OWL contained inshotannotations.

Mixing the two Of course, those two approaches can be mixed: specific OWL views
can take advanrage of both the annotation structure and contents to provide rich de-
scriptions of the annotated video, as described in [11].

3.2 OWL Queries

We just saw how Advene elements can be viewed through an OWL description. In prin-
ciple, any DL inference service [12] can be used to query thatOWL description. How-
ever, we mainly focused on the use of A-box querying (see section 4), for it integrates
smoothly with the notion of query in Advene, as we will see.

For this purpose, we use the SPARQL language4 to query the (deductive closure
of) OWL views. More precisely, we restrict ourselves to SELECT queries5. The sample
query in figure 6 illustrates the main features of SPARQL. ThePREFIX clauses define
namespace prefixes used in the other clauses. The FROM clauselocates the source of
information to be queried. The WHERE clause describes a subgraph to be searched,
where some nodes (whose name starts with a question mark ’?’)are variables. Finally,
the SELECT clause indicates which variables are to be returned. The result of such a
query is a list of tuples (2-uples in our examples), each tuple being a binding of the
selected variables, satisfying the query. We will now show how this is compatible with
the notion of query in Advene.

Queries in Advene are used asfilters: from a set of Advene elements (possibly
the whole package), they select the subset of elements matching the query. SPARQL
queries in Advene only requires that the initial set of itemsis described in RDF (which
has been made possible by the OWL views described previously), and that the URI
bound to the variables in the result are converted back to theAdvene element they
identify6.

4 http://www.w3.org/TR/rdf-sparql-query/
5 SPARQL has other kinds of queries (CONSTRUCT, DESCRIBE) butthey have different kinds

of results, which do not fit in Advene queries
6 Actually, there are two more slight differences: SPARQL queries return a set oftuplesrather

than a set of single elements, and those tuples may not only contain Advene element but

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rel: <http://purl.org/vocab/relationship/>
SELECT ?x ?xn ?g
FROM <http://movies.com/description>
WHERE {

?x rdf:type foaf:Person ;
foaf:name ?nx ;
rel:enemyOf ?y .

?y foaf:name "James Bond" .
?g rdf:type foaf:Group ;

foaf:member ?x .
}

Fig. 6. A SPARQL query, retrieving the URI and name of every enemy of James Bond belonging
to a group, and the URI of their group.

Implementation We have implemented a basic SPARQL support in Advene using
Pellet7 as an external inference and query engine: Pellet is indeed able to perform A-
box querying with SPARQL over OWL models. Pellet accesses the OWL views and the
query through the HTTP server embedded in the Advene core (see figure 3).

4 Using OWL in Advene

In this section we explore the benefits, from the point of viewof video annotation, of
OWL-enhanced Advene. We do so by presenting a number of prospective scenarios
made simple with OWL inference when they would have been complicated, when not
unfeasible, with more “classical” queries and views. As illustrated in figure 7, some
scenarios are focused on helping the annotator in her task, while others are focused on
the end-user.

Checking consistency We already mentionned that OWL allows schema designers to
express semantic constraints on the use of their schemas. The schema designer could
easily state in OWL that, e.g., a diegetic sequence can not bedirectly followed by more
than one sequence. OWL consistency checking can then be usedby the annotator to
ensure that her annotation structures complies with the underlying semantics of the
schema. Some engines, including Pellet, even provide human-readable explanations of
why a given OWL description is inconsistent. Indeed, inconcistency would probably
lead to unsatisfactory results from the other views provided with the schema (assume
a virtual montage restoring the diegetic order, which wouldnot know how to choose
between several following sequences).

alsostrings(literals and unresolved URIs). However, the current implementation of static and
dynamic views has no problems dealing with tuples and strings.

7 http://www.mindswap.org/2003/pellet/

Fig. 7. The schema designer provides a schema (not represented) with OWL views, OWL queries,
XHTML views and dynamic views adapted to that schema. The annotator creates annotations
complying with the schema. Some of the view help her in her annotation task, while other views
are aimed at the end-user.

Reporting Specific queries and static views can also be provided by the schema de-
signer to the annotator, for her to check that everything complies with the intended
semantics. A first advantage over plain consistency checking is that the “errors” can be
more specificly explained in those views. Another advantageis that SPARQL queries
can be more expressive than OWL classes. Let us consider our example using diegetic
sequences and shots, where the OWL content of shots uses an ontology describing
characters and events involving them. A SPARQL query could be used for finding all
sequences temporally containing a shot describing the death of a character, and dieget-
ically followed (directly or indirectly) by a sequence containing a shot involving that
character8 (note that such a query requires at the same time OWL representing Advene
structures and OWL in annotations content, see section 3.1). A dedicated static view
can then report allpost-mortemoccurrences of a characters to the annotator. A third
advantage, and an important one, is that such reporting views provide afiner grainthan
boolean consistency: it can be onlysuggestedthat characters should not resurrect, but
some movies might not comply with that constraint.

Advising Moreover, some static views could evenadvisecompletions or modifications
of the structure or content of Advene elements, based onannotation patternsexpected
by the schema designer. For example, a static view could generate an XHTML form
proposing to addfollowed byrelations in an incomplete diegetic chronology, possibly
excluding orderings where characters would reappear aftertheir death9.

Generating more hypermedia We just saw how static views can be generated thanks
to OWL inference for helping annotators in their task. The same mechanism can of

8 This can not be expressed as a class because it implies a cyclein the graph. However, the
SPARQL uses inference to take into account transitivity of the followed byrelation.

9 The HTTP server of the Advene core can indeed modify the data model in response to dedi-
cated GET or POST queries.

course be used to generate hypermedia aimed at end users. Non-trivial queries can be
used to extract a set of elements (e.g. “all shots representing characters who are res-
urrecting at some point of the movie”), then use them to generate an appropriate static
view (list of the shots, snapshots of such characters appearing) or dynamic view (virtual
montage with only those shots, in the original or diegetic order).

4.1 Discussion and related work

Despite the long acknowledged need for semantically annotating multimedia docu-
ments, the unification of multimedia annotation standards with Semantic Web tech-
nologies is still a work in progress. An alleged difficulty for this unification is the lack
of interoperability between standards [5, 13], especiallybetween XML-based MPEG-7
and RDF-based OWL. Interoperability has however to be achieved since Semantic Web
technologies “as is” are not quite adapted to multimedia annotation —though some ap-
proaches attempt to fill that gap [14]. Various approaches have hence been proposed,
either to convert MPEG-7 structures into RDF based languagein order to be able to
reason about them [15], or to embed OWL ontologies into MPEG-7 structures in or-
der to take advantage of standard-compliant tools, while retaining the semantics of the
description [16]. While the former may be compared with the first approach presented
in section 3.1, the latter can be compared to our proposition(in the same section) of
designing Advene schemas according to existing ontologies.

Another hindrance to the large adoption of multimedia annotation in general is the
complexity of the dominant standard MPEG-7 [5]. It is interesting to note that Semantic
Web annotation is often the target of the same criticism, as working with (sometimes
big) formal ontology requires some training for unskilled users. Advene eschews both
by relying on a simple and extensible model for video annotation, and by not relying
on formal ontologies from the bottom; we rather propose to use third-party or ad-hoc
OWL ontologies on an opportunistic basis, i.e. when (and if)they can prove useful in a
given context. By doing so, we argue that Advene meets the requirements for practical
multimedia annotation expressed by [17].

Finally, the Advene architecture can provide the functionalities targeted by other ap-
proaches: controlling and checking the structure of annotations [16] as seen in section 4,
semantic information retrieval [14] thanks to OWL queries,virtual montage [18]. But
advantage can also be taken from semantic annotation by other uses, such as enriched
video viewing, which are not, to our knowledge, addressed bythis community.

5 Conclusion

In this article we have presented some ideas for integratingsemantic web technologies
in an annotation-based hypervideo system. The very simplicity of the advene model,
and the versatility of the advene prototype made it easy to propose numerous ideas,
backed by a preliminary implementation. Current work on the“semantic web side”
of the advene project entails smoother integration of OWL-queries in the prototype
and graphical editing of such queries, design of OWL-views for consistency checking
and reporting, design of reasoning-enriched dynamic views, and theoretical study of

the notion of “reasoning context”. The advene prototype is freely downloadable and
extensible, and we encourage anybody to use it for testing new ideas on multimedia and
semantic web.

References

1. Aubert, O., Prié, Y.: From video information retrieval to hypervideo management. In: Cori-
media, the international workshop on multidisciplinary image, video, and audio retrieval and
mining, Sherbrooke, Canada (2004) 10 pp.

2. Aubert, O., Prié, Y.: Advene: active reading through hypervideo. In: ACM Hypertext’05.
(2005)

3. Sanchez, J.M.M., Koenen, R., Pereira, F.: MPEG-7: The Generic Multimedia Content De-
scription Standard, Part 1. IEEE Multimedia Journal9(2) (2002) 78–87

4. Pfeiffer, S., Parker, C., Schremmer, C.: Annodex: a simple architecture to enable hyper-
linking, search and retrieval of time-continuous data on the web. In: 5th ACM SIGMM
International workshop on Multimedia information retrieval. (2003) 87–93

5. van Ossenbruggen, J., Nack, F., Hardman, L.: That obscureobject of desire: Multimedia
metadata on the web, part 1. IEEE MultiMedia11(4) (2004) 38–48

6. Zope Corporation: Zope Page Templates reference. (2004)http://www.zope.org/
Documentation/Books/ZopeBook/2 6Edition/AppendixC.stx.

7. Jablonski, M.: Epoz, a cross-browser WYSIWYG editor for Zope. (2003)http://epoz.
sourceforge.org/.

8. Paton, N.W., ed.: Active Rules in Database Systems. Springer Verlag, New York (1999)
9. Fallon, H., de Lattre, A., Bilien, J., Daoud, A., Gautier,M., Stenac, C.: VLC User Guide.

VideoLAN Project. (2003)
10. Lawrence, F., Tuffield, M.M., Jewell, M.O., Prügel-Bennett, A., Millard, D.E., Nixon, M.S.,

Schraefel, M., Shadbolt, N.R.: OntoMedia - Creating an Ontology for Marking Up the Con-
tents of Heterogeneous Media. In: Proceedings of Ontology Patterns for the Semantic Web
ISWC-05 Workshop, Galway, Ireland (2005)

11. Troncy, R.: Integrating Structure and Semantics into Audio-visual Documents. In: Sec-
ond International Semantic Web Conference (ISWC2003), Sanibel Island, Florida, USA,
Springer (2003) 566–581

12. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press (2003)

13. van Ossenbruggen, J., Stamou, G., Pan, J.Z.: MultimediaAnnotations and the Semantic Web.
In: Proc. of the International Workshop on Semantic Web CaseStudies and Best Practices
for eBusiness (SWCASE). (2005)

14. Isaac, A., Troncy, R.: Using several ontologies for describing AV documents : a case study in
the medical domai. In: 2nd European Semantic Web Conference, Workshop on Multimedia
and the Semantic Web, Heraklion, Crete (2005)

15. Hunter, J.: Adding Multimedia to the Semantic Web - Building an MPEG-7 Ontology. In:
International Semantic Web Working Symposium (SWWS), Stanford (2001)

16. Troncy, R., Carrive, J.: A reduced yet extensible audio-visual description language. In:
Proceedings of ACM Document Engineering. (2004) 87–89

17. Geurts, J., van Ossenbruggen, J., Hardman, L.: Requirements for practical multimedia an-
notation. In: Workshop on Multimedia and the Semantic Web, Heraklion, Crete (2005) 4–11
part of 2nd European Semantic Web Conference.

18. Bocconi, S., Nack, F., Hardman, L.: Supporting the generation of argument structure within
video sequences. In: ACM Hypertext’05. (2005) 75–84

