Adaptive Strategy Design Pattern

Olivier Aubert — Olivier.Aubert@enst-bretagne.fr,
Antoine Beugnard — Antoine.Beugnard@enst-bretagne.fr
Laboratoire d’Informatique des Télécommunications, ENST Bretagne, France

June 25, 2001

Abstract

According to a definition found in the summary of the Workshop on Adaptable and Adaptive
Software| l: “A program is called adaptive if it changes its behaviour automatically according
to its context”. Within this context, we restrict our research domain to the automatic runtime
adaptation of existing behaviours.

In this paper, we propose an Adaptive Strategy Design Pattern that can be used to analyze
or design self-adaptive systems. It makes the significant components usually involved in a
self-adaptive system explicit, and studies their interactions. We show how the components
participate in the adaptation process, and characterize some of their properties.

1 Introduction

Self-adaptive software has recently seen a surge of interest in the computer science community.
Advances in modeling, hardware performance and introspection make it seem more plausible than
before. It has previously been used in specialized fields such as load-balancing| ,],
scheduling|], protocols| | or mobile computing| , |. However, its more
specific study is the subject of recent projects| , , , , ,] and
conferences]].

According to a definition found in the summary of the Workshop on Adaptable and Adaptive
Software] |- “A program is called adaptive if it changes its behaviour automatically according
to its context.”

Even within this definition, we can find some room for variants. We will further restrict our
research domain by stating that we would like to provide a model for automatic runtime adaptation
of existing behaviours.

In this Design Pattern, we will try to explicit the significant components usually involved in a
self-adaptive system and study their interactions. We will see how the components participate in
the adaptation process, and characterize some of their properties.

2 The Adaptive Strategy Design Pattern

2.1 Intent

Define a self-adaptive strategy, exposing to the client a single strategy referencing the best available
concrete strategy, only requiring from the client an access to the environment information that can
be used to choose the best strategy.

mailto:Olivier.Aubert@enst-bretagne.fr
mailto:Antoine.Beugnard@enst-bretagne.fr

2.2 Motivation

Mobile systems can greatly benefit from adaptivity. Consider the example of a mobile device
needing to access data located on fixed servers. The mobile device may be disconnected from the
network and thus unable to access the data. If a network access is available, the device can be
weakly or strongly connected, depending on the quality of the connection.

When strongly connected, the device can use a standard transmission mode, e.g. a standard
file sharing protocol. If the device is going to be disconnected, a copy of the data is made locally
so that remote access is not needed. Various systems| , | implement all or part of this
functionality, at different levels. Three different behaviours are thus used: one for the strongly
connected mode, one for the low-bandwidth mode and one for the disconnected mode. The mobile
system has to choose between them, basing its decision on the observation of the context.

The adaptation process involves four main steps. First, the system has to be able to monitor
its environment, either by observation (for instance, bandwidth evaluation) or by notification
(for instance, the system is notified when the mobile device is going to be disconnected). Based on
this information, the system makes a decision, i.e. selects, if necessary, a new behaviour. If it
decides to replace the current behaviour, it may have to handle the transition between the old
and the new behaviour, which may involve transmitting some state information. In our example, it
can be the queue of messages waiting to be sent. Once the new behaviour is ready to be activated,
the system can eventually enact the changes and validate the new configuration.

The Strategy Design Pattern| | already provides a repository of algorithms, and allows
them to be interchangeable. However, the pattern leaves the choice of the right strategy up to
the client. The Strategy pattern is thus necessary, but not sufficient, to deal with self-adaptation.
Building on it, we identify other components involved in the adaptation process, namely an Informa-
tionGateway offering monitoring and observation capabilities, a Controller that makes the decision, a
StateAdapter dedicated to the adaptation and transmission of information between strategies during
the transition phase, and the Adaptive Strategy that glues the components together and provides
an entry point for the clients.

Figure 1 on the following page shows a class model for our simplified example.

The aim of the proposed Design Pattern is to formalize the components used in the adaptation
process and discuss some implementation issues.

2.3 Applicability
Use the Adaptive Strategy Design Pattern when:

e different versions of an algorithm are available, and we cannot decide until runtime which
version is best suited for the task.

e differently stated, you are creating an autonomous system (or agent) whose behaviour can
change over time according to external and internal conditions.

e the method used to select an algorithm is well-defined for a case, and the client should not
have to worry about it, so you want to provide an adaptive component which should be simple
to use and reuse.

Storage

StateAdapter

write (data)
data read ()

transferState (from, to)

DisconnectedStorage

AdaptiveStorage ConnectedStorage

write (data)
data read ()

write (data)
data read ()

write (data)
data read ()

Controller

Device

update ()
Storage getConcreteStrategy ()

NetworkMonitor

long getBandwidth ()
notify ()

Figure 1: Example class model

2.4 Structure

Figure 2 on the next page shows the general structure of the Design Pattern’.

2.5 Participants

This pattern is built on the Strategy Design Pattern (behavioural), the Facade Design Pattern
(structural), and the Observer Design Pattern.

Client is the object using the Strategy services. It provides information needed by the Strategy
implementations.

Strategy declares an interface common to all supported algorithms. Client uses this interface to
call the algorithm defined by a ConcreteStrategy.

ConcreteStrategy implements the concrete algorithm using the Strategy interface. Each ConcreteS-
trategy may have an associated state, depending on the nature of the implemented service.

Adaptive Strategy is the main access point for the clients of the component. It provides a single
entry point, a Facade, for the different Strategy functionalities.

The fact that Adaptive Strategy is itself designed as a Strategy leads to a simplification of
the model, and exemplifies the decoupling of the mechanism implemented by the Strategy
from the adaptation mechanism. Ideally, we should be able to transparently replace the

The class diagram and collaboration diagram in figures 2 on the following page and 3 on page 5 use the UML
notation, but this does not mean that direct application should be derived from them.

’

‘/ Strategy |

StateAdapter

transferState (from, to)

Strategy | Strategy

execute ()

Concrétestrategy

AdaptiveStrategy

ConcreteStrategyl

execute (data)

ConcreteStrategy?2

execute ()

execute ()

Controller

[Client \
:

update ()
getConcreteStrategy ()

OBserver

InformationGateway . bserver \\
] 1

getEnvState () Subject .
notify () B

Figure 2: Class diagram for the Adaptive Strategy Design Pattern

Adaptive Strategy by one of the ConcreteStrategy, as a form of optimization by specialization
for instance.

Controller has the difficult task of choosing the best algorithm, using information gathered from
the InformationGateway. It is called by the Adaptive Strategy object.

InformationGateway represents the gateway through which the Controller gets the necessary infor-
mation to make its decision. It provides access methods to environment information. Thus it
constitutes the glue that is necessary to adapt a generic Adaptive Strategy (AdaptiveStorage
for instance) to a specific system.

o It defines an interface that lets the Controller access runtime or historical environmental
parameters.

e It may also provide active capabilities, which can trigger actions according to environ-
ment changes by notifying other components. This functionality can be implemented
with the help of the Observer Design Pattern.

StateAdapter handles if necessary the transition between two strategies that need to have some
state information exchanged.

2.6 Collaborations

Two types of adaptation can be distinguished|]. On action adaptation, as shown in figure 3
on the following page, occurs when a method of the strategy is called. On change adaptation,
presented in figure 4 on page 6, is triggered by a change in the environment, independently from

the invocation of the methods. Our example of data access from a mobile device uses an on change
adaptation.

2.6.1 On action adaptation

new:ConcreteStrategy :InformationGateway

[1.3: execute () 1.1.1: getEnvState ()
:Client

1: execute () 1.1: new:=getAlgorithm() [~Contoller

:AdaptiveStrategy

J/l.Z: transition (old, new)

StateAdapter

Figure 3: Collaboration diagram for on action adaptation.

Figure 3 on this page shows a possible collaboration” between the various constituents of our
system in the case of an on action adaptation.

Adaptive Strategy is the main entry point for the clients (the Context in the original Strategy
Design Pattern). It receives a request (1) for an operation, and asks (1.1) the Controller which
ConcreteStrategy is the most appropriate to process that request. The Controller chooses the best
strategy based on the information provided (1.1.1) by the InformationGateway and informs the
Adaptive Strategy about its choice. If there is a change of strategies, and both strategies share some
state information, the StateAdapter is invoked to manage the adaptation and transfer (1.2) of the
pertinent information from the old strategy to the new one. Once the transition is achieved, the
Adaptive Strategy can then forward the request (1.3) to the appropriate ConcreteStrategy.

2.6.2 On change adaptation

Figure 4 on the next page shows a collaboration between the entities of our Design Pattern in the
case of an on change adaptation. For this type of adaptation, the request processing, indexed as A
evolves independently from the adaptation process, indexed as B.

During the adaptation process, the InformationGateway notifies (B.1) the Controller that the
adaptation parameters have changed. The Controller then gets (B.1.1) the necessary environmental
information, makes its decision, and informs (B.1.2) the Adaptive Strategy if the ConcreteStrategy
has to be replaced. The Adaptive Strategy can invoke (B.1.3) the StateAdapter to adapt and transfer
information between the old and the new strategy if necessary.

2The link between InformationGateway and Client is not shown

I c.ConcreteStrategy :InformationGateway ‘
L 1 [|
L 1

:Client
[

TA.l.l: execute () B.1: update()

‘ B.1.1: getEnvState ()

A.1: execute ()

1 -AdaptiveStrateqy 1 B.1.2: setAlgorithm(new)

‘ :Controller
i [

lB.l.S: transition (old,new)

‘ :StateAdapter ‘
[
L

Figure 4: Collaboration diagram for on change adaptation - A and B sequences are independant.

On the other hand, requests (A.1) for operations are managed by the Adaptive Strategy, which
directly forwards (A.1.1) them to the ConcreteStrategy.

2.7

Consequences

The Adaptive Strategy Pattern has the following consequences:

2.8

Hiding details from clients. Our Design Pattern provides a unique interface to invoke the
best algorithm, saving the client the trouble of choosing it. It benefits from a more precise
knowledge of execution conditions so that it is able to choose the most appropriate available
strategy.

Separation of concernes: distinguishing the adaptation process from the execution process.
Our Design Pattern promotes a clear separation between these issues which leads to more
clarity in the comprehension of their mechanisms and interactions.

Make the StateAdapter explicit. The transition phase is often neglected in adaptive systems.
The StateAdapter reifies this important aspect in the design of an adaptive system.

Consequences on extensibility. The addition of a new strategy is on the one hand made easier
by the reification. On the other hand, the Controller has to be informed of all the available
ConcreteStrategies and of their respective charateristics, in order to be able to choose the most
appropriate among them. Thus the implementation of the Controller, discussed in section 2.8,
may in some cases hinder the addition of new strategies.

Implementation

2.8.1 Adaptation process

The process of dynamic adaptation can be divided into four basic steps, inspired from

[J

evaluate and monitor observations (InformationGateway)

make a decision (Controller)

handle transitions (StateAdapter)

enact changes (Adaptive Strategy)

Each step involves more particularly a part of the Design Pattern.

The evaluation and monitoring part achieved by the InformationGateway has to be carefully
designed. It can have a great impact on the overall performance of the system, if it is
too intrusive. Various approaches have been studied| , ,], involving in
particular a hierarchical organisation of observations. Both pull and push approaches can be
used.

The information accessible via the InformationGateway can be either from the past (historical
information), from the present (current state information), or from the future (in the case of
prediction information).

Different approaches can be used to implement the Controller. They have in particular an
impact on the extensibility of the system. Using an ad-hoc function implies the modification of

the Controller when adding a new strategy. Using cost functions|], associated to each
strategy, could help to alleviate this problem. Other approaches include heuristics, neural
network, simulator|], state automaton]| |, etc.

How can we guarantee that the decisions of the Controller cover the whole range of situations?
We have to make sure that every case is taken into account. One of the ways to ensure this
is to define a default algorithm which will be valid in all cases, even if suboptimal.

The Controller is the concretization of the goal of our system. An adaptive system has a goal:
maintaining a connection, optimizing bandwidth use, etc. The implementation of the choice
algorithm of the Controller is a translation of this goal into code. A change in the goal is then
translated into either a change in the choice algorithm, or a change in its parameters.

An analogy can be made with a complex system with many control knobs, whose complexity is
hidden by the Controller which provides only one big control knob (for instance in a web cache
case, the saved bandwidth vs. access latency, although the real situation is more complex).

Depending on the statefulness of the strategies, the transition phase from one strategy to
another can involve transmitting state information from the old strategy to the new one. The
StateAdapter is in charge of the adaptation and transmission of the state information.

Once the new strategy has been chosen and the transition handled, the Adaptive Strategy can
validate the adaptation.

Two important issues must be taken into account. First, means should be provided by the
Adaptive Strategy in order to prevent service requests to be lost or mismanaged during the
transition phase.

Second, the stability of the system must be ensured, even in the case of quickly changing
conditions. Stability is conventionally achieved in hardware adaptive devices via a hysteresis
mechanism|]

2.8.2 Adaptation classification

As mentioned in section 2.6, | | identifies two types of adaptation:

e on change adaptation is triggered by a change in the environment, typically notified by the
InformationGateway component. In this case, a reference to the concrete strategy is usually
kept and invoked when necessary, using a Prozxy Design Pattern. In our example, a change
in the network conditions can cause a change in our strategy of accessing data.

e on action adaptation occurs at the strategy invocation time. This kind of adaptation is
especially used when one of the decision criteria depends on some property of the parameters
of the algorithm. For instance, an adaptive sorting algorithm depends on the properties of
the data to be sorted.

The desired behavior may involve both types of adaptation. For instance, in the mobile storage
example, we may have an on change adaptation handling the variations in bandwidth, and an on
action adaptation intended to optionally compress the data, according to its type.

The combination of both types of adaptation can be achieved in two ways. The first one consists
of simply implementing the necessary means as a set of ad-hoc mechanisms in the Controller. The
Controller will then be activated by the InformationGateway for an on change adaptation, as well as
by the client at each invocation for an on action adaptation.

Another method would be to apply our Design Pattern to the Controller itself. Indeed, the
Controller can be built as an adaptive strategy, which would switch its selection algorithm according
to the environment. An on change adaptation for the Controller has to choose between the concrete
ConnectedController and DisconnectedController. These concrete strategies are then used as the
Controller for the other, on action, adaptation.

2.8.3 Strategy classification

A simple distinction would be to distinguish between stateless and stateful strategies. The state-
lessness of a strategy induces many simplifications in the strategy change policy discussed below.

For instance, various sorting strategies do not need to share state information. On the other
hand, a concurrency strategy]| |, featuring as alternatives a ThreadPool, Single-Threaded and
Thread-Per-Connection strategies, needs to transmit the enqueued incoming connections waiting
to be handled from a strategy to another.

2.8.4 Strategy change policy

Once the Controller has decided that the current strategy should be replaced comes the question of
how to handle the transition from the old strategy to the new one.

In the case of stateful strategies, if we have to keep some state information from one strategy
to another, the StateAdapter adapts and transmits the state information.

MoleNE] | uses a component named state adapter which allows the transfer of information
between Implementation objects. If the information is sufficiently similar, this service uses a simple
Memento Design Pattern. If the information is different, the state adapter has to select significant
information from the source Implementation to be given to the new Implementation.

The 2K]|] distributed operating system relies on a CORBA ORB called dynamicTAO|
It handles transitions using a dedicated component called ComponentConfigurator|], which
also uses the Memento Design Pattern.

2.9 Sample Code

We will here describe mainly interfaces for our mobile storage access, which features an on change
adaptation. An abstract class defines the Storage interface:

public abstract class Storage {
public abstract void write (Data d);
public abstract Data read ();

Three concrete classes are derived thereof. One for each mode of operation (connected or
disconnected) and the AdaptiveStorage class that will act as a Prozy for the other concrete strategies.

public class ConnectedStorage extends Storage {
public void write (Data d) { ... };
public Data read () { ... };
X
public class DisconnectedStorage extends Storage { ... }
public class AdaptiveStorage extends Storage { ... }

NetworkMonitor monitors the network bandwidth and notifies the Controller when an important
change occurs.

public class NetworkMonitor {
public long getBandwidth () {...};
public void notify O {...};

}

Controller is an Observer of InformationGateway. When notified of changes, it selects the most
appropriate concrete strategy, and informs the AdaptiveStorage.

public class Controller {

public void update () {...};

public Storage getConcreteStrategy (O {...};
}

StateAdapter transfers state information, for instance the queue of messages not yet sent, from
the current strategy to the strategy that will be activated.

public class StateAdapter {
public void transferState (Storage from, Storage to) {...};
}

The application only has to invoke AdaptiveStorage methods to access the data in the most
appropriate way.

AdaptiveStorage st;
Data d;

st.read (d);
st.write (d);

2.10 Known Uses

The Adaptive Strategy Design Pattern can be used to analyze existing adaptive systems.

The ISTORE Project|] aims to provide self-adaptive data storage, by combining hard-
ware and software elements. Their system couples LEGO-like plug-and-play hardware components,
having active monitoring capabilities, with a generic framework for constructing adaptive soft-
ware. The decoupling between observation, control and adaptation is clear. However, transition’s
handling is not explicit.

Operating systems can also benefit from adaptive features, in many aspects. The Synthesis|]
operating system introduces fine-grained adaptive scheduling, with a design inspired by the hard-
ware phase-locked-loop. The VINO] | operating system provides a general framework, based on
the notion of grafts to allow self-adaptation of various mechanisms like memory paging, disk wait,
interrupt latency, etc. Their implementation also decouples observation, control and execution.

In the network domain, Adaptive Protocol| | also points out the need for a clear distinc-
tion between mechanism and policy. In their model, functions can be dynamically inserted and
removed in response to changes in the environment.

Various approaches to adaptivity, from language approaches| | to middleware ones] ,

|, operating systems| | or more generic approaches, like the Viable Systems Model|],
feature some or all of the aspects mentionned in this Design Pattern.

2.11 Related Patterns

e Strategy
o Observer

e Facade

This pattern is primarily an extension of the Strategy Design Pattern.

3 Related work

The specific issues of self-adaptivity have been largely discussed in the domain of control theory
applied to industrial processes. The inspiration of control theory to the design of software systems
has already been studied in | , ,], but cover a wide range of adaptation types,
from parametric adaptation to architecture reconfiguration.

[| has an approach similar to ours of analyzing self-adaptive systems through the composi-
tion of Design Patterns. The composition of the Strategy and Observer Design Patterns is studied
in depth, and it also applies to behaviour changes initiated by other objects. The separation of the
different entities taking part in the adaptation process is not pushed as far as necessary, though.

4 Conclusion

In this paper we have identified the different entities composing a self-adaptive system, and we have
shown their interaction during the four steps of the adaptation process: evaluation and monitoring,
decision-making, transition-handling, and activation of changes.

The usefulness of this Design Pattern is twofold. On the one hand, it provides a support for
the analysis of existing self-adaptive systems. On the other hand, it can be used during the design

10

of a self-adaptive system to identify the issues and the needed tools. A concrete application of the
Adaptive Strategy Design Pattern is currently being developped in an adaptive web cache system.

The mechanism of state adaptation will be the subject of a more precise study leading to a
State Adapter Design Pattern.

5 Acknowledgements

Maria Teresa-Segarra has provided substantial comments and reviews of this pattern and the careful
and detailed feedback from our KoalaPLoP shepherd, Gustavo Rossi, led to significant improve-
ments. Thanks to the KoalaPLoP attendees, and especially to Charles Herring, for the feedback
and the fruitful discussions.

References

[BMNT00] P. Boinot, R. Marlet, J. Noyé, G. Muller, and C. Consel. A declarative approach for
designing and developing adaptive components. In 15th IEEE International Conference
on Automated Software Engineering, 2000.

[BN99] Mathias Braux and Jacques Noyé. Changement dynamique de comportement par com-
position de schémas de conception. In Langages et Modeéles a Objets LMO’99, january
1999.

[BOK'99] A. Brown, D. Oppenheimer, K. Keeton, R. Thomas, J. Kubiatowicz, and D.A. Patter-
son. Istore: Introspective storage for data-intensive network services. In Proceedings of
the 7th Workshop on Hot Topics in Operating Systems (HotOS-VII), Rio Rico, Arizona,
march 1999.

[EKC98] Michael D. Ernst, Craig Kaplan, and Craig Chambers. Predicate dispatching: A unified
theory of dispatch. In ECOOP 98, the 12th European Conference on Object-Oriented
Programming, pages 186-211, July 1998.

[FDBC99] Adrian Friday, Nigel Davies, Gordon Blair, and Keith Cheverst. Developing adaptive
applications: The most experience. Journal of Integrated Computer-Aided Engineering,
6(2):143-157, 1999.

[GHI1] MG Gouda and T Herman. Adaptive programming. In ieeetse, volume 17, pages 911—
921, 1991.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Designs Patterns:
Elements Of Reusable Object-Oriented Software. Addison Wesley, 1995.

[Har9g] Fazilah Haron. Phase-based Adaptive Dynamic Load Balancing for Parallel Tree Com-
putation. PhD thesis, University of Leeds, 1998.

[HKO00] Charles Herring and Simon Kaplan. The viable system architecture. In Thirty-Fourth
Hawaii International Conference on System Sciences (HICSS-34), 2000.

[HKC199] Christopher K. Hess, Fabio Kon, Roy H. Campbell, Manuel Roméan, Dulcineia Carvalho,
and Luiz Magalhaes. Dynamic resource management for smart environments: The 2k
approach. In Inter-agency Workshop on Smart Environments, Atlanta, Georgia, July
25-26 1999. Georgia Institute of Technology.

11

[HMS99]

[KBE99]

[KC99]

[KP89)

[Lad9s]
[Lad99]

[LLY5]

[MP90]

[OGT+99)

[RKC99]

[RSZ87]

[SAO0]

[SKK*90]

[SS08]

Ilija Hadzi’c, William S. Marcus, and Jonathan M. Smith. Policy and mechanism in
adaptive protocols, 1999.

Mieczyslaw M. Kokar, Kenneth Baclawski, and Yonet A. Eracar. Control theory-based
foundations of self-controlling software. IEEFE Intelligent Systems, pages 37—45, May
1999.

Fabio Kon and Roy H. Campbell. Supporting automatic configuration of component-
based distributed systems. In Proceedings of the 5th USENIX Conference on Object
Oriented Technologies and Systems, COOTS’99, may 1999.

M.A. Krasnosel’skii and A.V. Pokrovskii. Systems with hysteresis. Springer, Berlin,
19809.

Dr. Robert Laddaga. Self-adaptive software. Technical report, DARPA, january 1998.

Robert Laddaga. Creating robust software through self-adaptation. IFEE Intelligent
Systems, pages 26—29, May 1999.

Karl Lieberherr and Cristina Lopes. Workshop on adaptable and adaptive software.
Technical report, Northeastern University, 1995.

H. Massalin and C. Pu. Fine-grain adaptive scheduling using feedback. Computing
Systems, 3(1):139-173, winter 1990.

P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici,
D. Rosenblum, and A. Wolf. An architecture-based approach to self-adaptive software.
IEEFE Intelligent Systems, pages 5462, May 1999.

Manuel Roman, Fabio Kon, and Roy H. Campbell. Design and implementation of
runtime reflection in communication middleware: the dynamictao case. In Proceedings
of the ICDCS’99 Workshop on Middleware, June 1999.

K. Ramamritham, J.A. Stankovic, and W. Zhao. Meta-level control in distributed real-
time systems. In 7th International Conference on Distributed Computing Systems, pages
10-17, september 1987.

M.T. Segarra and F. André. A framework for dynamic adaptation in wireless environ-
ments. In Proc. of TOOLS Europe 2000, june 2000.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.
Steere. Coda: A highly available file system for a distributed workstation environment.
IEEE Transactions on Computers, 39(4):447-459, 1990.

Margo Seltzer and Christopher Small. Self-monitoring and self-adapting operating sys-
tems. In Proceedings of the Sixth Workshop on Hot Topics in Operating Systems, 1998.

12

	Introduction
	The Adaptive Strategy Design Pattern
	Intent
	Motivation
	Applicability
	Structure
	Participants
	Collaborations
	On action adaptation
	On change adaptation

	Consequences
	Implementation
	Adaptation process
	Adaptation classification
	Strategy classification
	Strategy change policy

	Sample Code
	Known Uses
	Related Patterns

	Related work
	Conclusion
	Acknowledgements

